A self-cleaning underwater superoleophobic mesh for oil-water separation

نویسندگان

  • Lianbin Zhang
  • Yujiang Zhong
  • Dongkyu Cha
  • Peng Wang
چکیده

Oil-water separation has recently become a global challenging task because of the frequent occurrence of oil spill accidents due to the offshore oil production and transportation, and there is an increasing demand for the development of effective and inexpensive approaches for the cleaning-up of the oily pollution in water system. In this study, a self-cleaning underwater superoleophobic mesh that can be used for oil-water separation is prepared by the layer-by-layer (LbL) assembly of sodium silicate and TiO2 nanoparticles on the stainless steel mesh. The integration of the self-cleaning property into the all-inorganic separation mesh by using TiO2 enables the convenient removal of the contaminants by ultraviolet (UV) illumination, and allows for the facile recovery of the separation ability of the contaminated mesh, making it promising for practial oil-water separation applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable underwater superoleophobic and low adhesive polypyrrole nanowire mesh in highly corrosive environments.

Underwater superoleophobic materials with low adhesion have been widely researched owing to their self-cleaning and anti-corrosive properties. In this study, polypyrrole (PPy) nanowire meshes have been successfully fabricated by in situ electrochemical polymerization on stainless steel mesh substrates in the presence of phosphate buffered saline as both an electrolyte and a dopant. PPy nanowire...

متن کامل

Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation.

A simple and fast method to prepare robust superhydrophobic octadecylphosphonic acid (ODPA) coating on oxidized copper mesh for self-cleaning and oil/water separation is reported here. The substrate of the copper mesh was first oxidized by simple immersion in an aqueous solution of 1.0 M NaOH and 0.05 M K2S2O8 at room temperature for 30 min, which was then covered with micro- and nanoscale Cu(O...

متن کامل

Study of factors governing oil-water separation process using TiO₂ films prepared by spray deposition of nanoparticle dispersions.

Surfaces which possess extraordinary water attraction or repellency depend on surface energy, surface chemistry, and nano- and microscale surface roughness. Synergistic superhydrophilic-underwater superoleophobic surfaces were fabricated by spray deposition of nanostructured TiO2 on stainless steel mesh substrates. The coated meshes were then used to study gravity driven oil-water separation, w...

متن کامل

A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation

It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil-water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a sim...

متن کامل

A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments

Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013